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Abstract. We analyse the properties of the partitioned densities of states in mesoscopic transport
problems. In terms of an imaginary-potential model, a concise derivation of the local partial density
of states (LPDOS) is given. Using a numerical method to calculate the functional derivative of the
scattering matrix, a detailed study of different kinds of decomposed densities of states in double-
barrier structures is carried out. We find that the dynamical local density of states dnαα(x)/dE
and the global partial density of states (GPDOS) dNαα/dE in the nonclassical regime cannot be
neglected in full quantum calculations.

1. Introduction

As is well known for mesoscopic conductors, electron dynamics is governed by quantum
mechanics. Quantum effects resulting from interferences between the incident and reflected
wavefunctions as well as from confinements play dominant roles in determining the transport
properties of conductors. Among the quantities describing this quantum transport is the density
of states (DOS), which is an important quantity in many fields such as those of thermodynamical
systems, tunnelling spectroscopy, and scattering theory [1–3]. In the 1960s, Dashen, Ma, and
Bernstein (DMB) [4] gave the DOS in terms of the scattering matrix. The system that they
considered is a grand canonical ensemble and the volume of the system is infinite. The extracted
dynamical density of states is dependent purely on the trace of the on-shell scattering matrix
and its inverse matrix. The DMB relation is

	
dN

dE
= Tr

(
S† dS

dE
− dS†

dE
S

)
where 	 dN/dE is the variation of the total DOS. With the advance of technology, real
electronic devices have reached the size for which one must consider the size confinement
effect and interference effects [5–7]. The electrical DOSs of a solid body are controlled by the
possible interactions that the body can have with its environment [8]. In the 1990s, Büttiker
and co-workers [9,10] developed the concept of the DOS by decomposing the total DOS into
partial densities of states (PDOSs) in the mesoscopic transport regime. The advantage of the
partitioned DOS is that the dynamical quantum information can be obtained by using these
PDOSs. For example, in recent low-frequency AC electronic transport studies [11–13,15,16]
the PDOS is directly related to the displacement current. In particular, for the problem
of multiple-probe scattering in mesoscopic conductors, each scattering matrix element can
be directly related to the PDOS which describes the density of states for the possibility of

0953-8984/00/174053+14$30.00 © 2000 IOP Publishing Ltd 4053



4054 Xuean Zhao

transmission or reflection of that conductor. In addition to the role of the PDOS in the AC
response, the local partial density of states (LPDOS) can be used to calculate the current-
fluctuation spectrum at a single tunnelling tip [17]. Thus, many properties in transport problems
for mesoscopic conductors can be predicted by the calculation of the PDOSs and the DOS.

In the semiclassical sense, there are four kinds of DOS which directly contribute to the
electron transport in mesoscopic conductors [13, 14]. First, the global total DOS contributes
the global transport density of states, and comes naturally from the external influence on the
whole system when a reservoir increases its electrochemical potential slightly. Second, the
global partial density of states (GPDOS) gives a partial total DOS for the transport density of
states. The system response function, i.e., the admittance, is determined by the GPDOS. In
the scattering theory, the form of the GPDOS is

dNαβ

dE
= 1

4π i
Tr

(
S

†
αβ

dSαβ

dE
− dS†

αβ

dE
Sαβ

)
(1)

where Sαβ is the scattering matrix element which connects a probe of the conductor labelled
by β to that labelled by α. The third PDOS is the injectivity, which describes the density of
states injected from probe α regardless of which probe it finally exits from. The fourth PDOS
is the reverse of the process of injectivity. It is the emissivity, which describes the particles
incident from all probes and exiting only from the probe β. The above four densities of states
are global properties of the density of states. Correspondingly, there are four local densities
of states which describe the local partitioned properties of the density of states and arise in
the scattering theory due to the presence of a an internal potential perturbations. That is, the
long-range Coulomb interaction of the charges gives rise to an internal response to the external
perturbation, and this internal response determines the local electrical states and is naturally
expressed in terms of the LPDOS. The scattering theory and linear response [13] model predict
the LPDOS as

dnαβ(r)

dE
= − 1

4π i
Tr

[
S

†
αβ

dSαβ

dU(r)
− dS†

αβ

dU(r)
Sαβ

]
. (2)

Thus, if one knows the functional dependence of the scattering matrix on the scattering potential
landscape U(r), the LPDOS can be obtained. Although in the investigation of AC transport the
LPDOS has been widely used [18–21], to our knowledge there has been no explicit and concise
derivation of this quantity. In this work we first give a derivation of the LPDOS based on the
physical model, and then we give an example of a numerical calculation for the double-barrier
structure for different PDOSs and LPDOSs. Finally, we discuss the special characteristics of
these quantities and give our conclusions.

In the four kinds of PDOS and LPDOS, the essential PDOS element is the LPDOS. All
of the other PDOSs can be constructed from the LPDOS. For instance, the local injectivity
dnα(r)/dE and emissivity dnβ(r)/dE can be expressed by

dnα(r)

dE
=

∑
β

dnαβ(r)

dE
and

dnβ(r)

dE
=

∑
α

dnαβ(r)

dE
. (3)

The global injectivity and the DOS are just integrals of the LPDOS [13, 14]:

dNαβ

dE
=

∫
dr

dnαβ(r)

dE
and

dN

dE
=

∑
α

dNα

dE
. (4)
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2. The local partial density of states

Consider a quasi-one-dimensional system. The unperturbed Hamiltonian is H0. There are
many probes denoted by α, β, γ , etc contacting with external reservoirs. We put an imaginary
potential −(ih̄�/2)δ(x − x ′) at the position x ′. The coefficient −ih̄/2 is introduced for
convenience. Then the perturbed total Hamiltonian becomes

H = H0 − ih̄�

2
δ(x − x ′). (5)

Here

H0 = − h̄2

2m
∂2
x + U(x).

The perturbed Hamiltonian leads to δU(x) = −(ih̄�/2)δ(x−x ′). According to Schrödinger’s
equation, the particle flux continuity equation is then

∂

∫
�

|ψ(x, t)|2 dx
/

∂t +
∮
∂�

J dS = −�|ψ(x ′, t)|2 (6)

where � involves the point x ′ and ∂� is �’s boundary surface, or

∂t |ψ(x, t)|2 + ∂xJ = −�|ψ(x, t)|2δ(x − x ′). (7)

Since the Hamiltonian is independent of time, the wavefunction ψ(x, t) is the steady-state
scattering solution of the time-independent Schrödinger equation. In the latter we drop the
time variable for convenience. The energy dependence of ψ(x) is not explicitly written out
due to on-shell scattering. Equation (6) and equation (7) indicate that the quantum mechanical
probability current has a sink or a source at x ′, respectively, depending on the sign of �. Here
J is the usual quantum mechanical current density. The variation of the current density is

dJ = −�|ψ(x ′)|2. (8)

The dwell time can be expressed by the relation [22, 24]

dτD = |ψ(x ′)|2 dx ′

J
(9)

where dτD is the lifetime of a particle staying in the interval [x ′, x ′ + dx ′]. Assume that
the current J is the incident current; then the change of the current at the outgoing probes
is expressed by equation (8). On substituting equation (8) into equation (9), the dwell time
becomes

dτD = −dJ dx ′

J�
. (10)

In the scattering theory, one can express the variation of the probability flux in terms of the
change in the transmission and reflection coefficients, δT and δR, i.e.

dJ = J (δR + δT ). (11)

In addition, the transmission and reflection are closely connected to the scattering matrix
elements:

R = Tr
[
s†
ααsαα

]
and T = Tr

[
s

†
αβsαβ

]
(12)

where the Greek letters denote the probes (contacts). We consider here the mean-field
approximation. So the interactions between the particles and the perturbations are involved
in the internal potential U(x). Since the scattering matrix sαβ is not only a function of the
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incident energy E but also a functional of the effective potential, we write sαβ = sαβ(E,U(x)).
Expanding the scattering matrix to first order in the effective potential U(x), one obtains

sαβ(E,U + δU) = s0
αβ +

∫
δsαβ

δU(x)
δU(x) dx (13a)

or

δsαβ(E,U) =
∫

δsαβ

δU(x)
δU(x) dx (13b)

where the s0
αα are unperturbed scattering matrix elements. The variations of the reflection and

transmission probabilities can be expressed by

δR = Tr(s†
αα δsαα + δs†

αα sαα) = − ih̄�

2
Tr

(
s†
αα

δsαα

δU(x ′)
− δs†

αα

δU(x ′)
sαα

)
(14)

and

δT = Tr(s†
αβ δsαβ + δs

†
αβ sαβ) = − ih̄�

2
Tr

(
s

†
αβ

δsαβ

δU(x ′)
− δs

†
αβ

δU(x ′)
sαβ

)
. (15)

In terms of equation (10) and equation (11) we obtain

dτD = ih̄

2
Tr

[(
s†
αα

δsαα

δU(x ′)
− δs†

αα

δU(x ′)
sαα

)
+

(
s

†
αβ

δsαβ

δU(x ′)
− δs

†
αβ

δU(x ′)
sαβ

)]
. (16)

We can write for brevity

dτD = ih̄

2

∑
β

Tr

(
s

†
αβ

δsαβ

δU(x ′)
− δs

†
αβ

δU(x ′)
sαβ

)
dx ′. (17)

The well-known expression for the local density of states (LDOS) [25] is

ρ(x,E) =
N∑

n=1

∫
〈x|φn(E

′)〉〈φn(E
′)|x〉δ(E − E′) dE′ =

N∑
n=1

〈x|φn(E)〉〈φn(E)|x〉. (18)

Iannaccone [26] showed that the dwell time in the region � is directly related to the integral
of the density of states ρ(x,E) in that region. That is,

ρ�(E) =
N∑

n=1

∫
�

〈x|φn(E)〉〈φn(E)|x〉 dx =
N∑

n=1

〈φn(E)|P̂�|φn(E)〉 = 1

2πh̄

N∑
n=1

τ
(n)
D . (19)

The expressions for the components of the dwell time read as

dτα
D = 2πh̄ρα

�. (20)

Here we consider only one channel, and take � → 0. The states in the interval [x ′, x ′ + dx ′]
are

ρα(x ′) dx ′ = ρα
�. (21)

Then we have

2πh̄ρα(x ′) dx ′ = ih̄

2

∑
β

Tr

(
s

†
αβ

δsαβ

δU(x ′)
− δs

†
αβ

δU(x ′)
sαβ

)
dx ′. (22)

Assuming that the current is incident from the probe α, and denoting the density of states by
ρα(x) = dnα(x)/dE, we finally obtain

dnα(x
′)

dE
=

∑
β

[
− 1

4π i
Tr

(
s

†
αβ

δsαβ

δU(x ′)
− δs

†
αβ

δU(x ′)
sαβ

)]
(23)
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where the index β runs all probes. The quantity in the square brackets is defined as the
LPDOS [14]:

dnαβ(x)

dE
≡ − 1

4π i
Tr

(
s

†
αβ

δsαβ

δU(x)
− δs

†
αβ

δU(x)
sαβ

)
. (24)

In the last expression we drop the prime for the arbitrary position. In the semiclassical sense this
expression shows the relation between the local partitioned density of states and the scattering
matrix. We know that the scattering matrix contains only the dynamical information for the
system. Thus, the LHS of equation (24) is the dynamical partial density of states which
characterizes the density response in a local space to the external perturbations on the small-
size conductor system. The advantage of this kind of partitioning is that it not only gives the
density of states but also gives the directions of the particle’s motion.

The decomposition of DOS is necessary for multiprobe conductors since not all of the
DOSs contribute to a particular transport direction. A natural question arises: what fraction
of the total DOS contributes to the transmission by particles incident on the probe (β) with
unit current amplitude to the probe (α)? By using the LPDOS, we can answer this question
clearly. From the above derivation we see that the point x has several properties. These
properties can be represented by several states. The state |α, x, β〉 contains the information
that a particle incident on the probe α reaches the point x and then leaves that point and finally
goes to the probe β. If we exchange the probe indices α and β, the meaning is different. The
state |β, x, α〉 represents a particle coming in from the probe β which is scattered from the
point x and then goes to the probe α. In the next section we will support this argument with a
numerical calculation.

In addition to the states |α, x, β〉 and |β, x, α〉, there are states |α, x, α〉 and |β, x, β〉.
These states represent a particle that is incident from the probe α or β, reaches the point x,
and then from there is reflected to the original probe. How many of these kinds of state there
are in the energy interval (E,E + 	E) can be calculated from the quantities dnαα(x)/dE
and dnββ(x)/dE. Here the position x can be in the nonclassical region and the quantities
dnαα(x)/dE and dnββ(x)/dE are not zero. This property is unlike the semiclassical and
classical results. Reference [14] gives a semiclassical example of these quantities based
on phase-space arguments. In a one-dimensional single-barrier case it was shown that
dnqc

12(x)/dE = dnqc
21(x)/dE = (T /2) dn(x)/dE and dnqc

11(x)/dE = R dn(x)/dE and also
dnqc

22(x)/dE = 0 when particles are incident from probe 1, and x is located between probe 1
and the barrier. We will see from the numerical calculations that dn11(x)/dE is not accurately
equal to the fraction R of the total density of states and dn22(x)/dE is not equal to zero. Here
the superscript ‘qc’ represents the quasi-classical approximation. The results are the same for
particles incident from probe 2 by exchanging the subscripts. The above expressions have a
clear physical meaning. The expression dnqc

12(x)/dE + dnqc
21(x)/dE = T dn(x)/dE states that

the density of states for particles traversing from probe 1 to probe 2 plus from 2 to 1 is just a
fraction of the transmission part of the total density of states. The sum of the reflection density
of states is the reflected part of the total density of states.

In section 3 we will give a numerical example corresponding to the above discussion. At
the outset, we would like to clarify that the purpose of this numerical study is to illustrate the
importance of the partitioned density of states and not to model a typical resonant tunnelling
device, whose structure is considerably more complicated [27]. In order to simplify the task
of calculation, we use the rectangular-potential approximation and assume flat bands outside
the barriers. We use atomic units in all of the numerical calculations, i.e., h̄ = 1, e = 1, and
2m = 1.
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3. Example

3.1. Numerical method

As mentioned in the previous section, the basic quantity is

dnαβ

dE
= − 1

4π i

(
s

†
αβ

δsαβ

δU(x)
− sαβ

δs
†
αβ

δU(x)

)
.

All of the other densities of states can be obtained as combinations of such quantities. The
key task in calculating the LPDOS is to calculate the functional derivative and the scattering
matrices. According to functional theory, a differential of a functional is the part of the
difference F [f + δf ]−F [f ] that depends on δf linearly. Here F is a functional. The variable
is the function f (x). The difference δf of the function may contribute to the functional
F [f + δf ]. So we can write

δF =
∫

δF [f (x)]

δf (x)
δf (x) dx (25)

where the quantity

δF [f (x)]

δf (x)
(26)

is just the functional derivative of F [f (x)] with respect to the function f (x) at the point x [28].
Equation (26) is the rule for operating on δf (x) to give the number δF [f (x)]. In the actual
calculations the following method is applicable.

With the help of the rule, we expand F [f + δf ] − F [f ] in terms of δf (x). Keeping
only the first-order term and taking care that the result is put into the form of the definition
equation (26), one can explicitly express δF [f (x)]/δf (x) by using the process

lim
ε→0

[
F [f (x) + εφ(x)] − F [f (x)]

ε

]
=

{
d(F [f (x) + εφ(x)])

dε

}
ε=0

=
∫

δF [f (x)]

δf (x)
φ(x) dx (27)

where φ(x) is an arbitrary function. Taking φ(x) to be a delta function, δ(x − x ′), one obtains
an explicit expression for the functional derivative:

δF [f (x ′)]
δf (x ′)

= d(F [f (x) + εφ(x)])

dε

∣∣∣∣
ε=0

. (28)

In our problem, the functional comprises the scattering elements sαβ(E,U(x)). We first
put a delta function with intensity ε at an arbitrary position in the structure. By calculating
the scattering elements in the new potential and then letting the intensity ε approach zero, we
obtain the quantity δsαβ/δU(x) and its conjugate δs

†
αβ/δU(x). For scattering matrix elements

we use the transfer matrices and their combinations to get each scattering matrix element.

3.2. Results and discussion

Figure 2 shows the model of the resonant tunnelling diode and the simplified band structure.
The particles are confined in the x-direction, while in the y-, z-directions the particles are
free. Consider the two-channel case: one channel for particles moving with positive velocity
v and the other channel for particles moving with negative velocity −v at each probe α, β,
γ , etc. We divide the system into three parts. The scattering is assumed to be elastic in
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Figure 1. The model of the scattering structure. α, β, γ , and ζ represent the probes contacting
with each of the reservoirs.

Figure 2. The band structure of the simplified double-barrier device. The inset is a real device
potential profile. The boundaries of the system are located at x1 and x2. xL1 and xR1 are classical
turning points for the left barrier; xL2 and xR2 are classical turning points for the right barrier. The
scattering region is between a1 and b2.

the region x1 < x < x2. The potentials are located in the intervals [a1, b1] and [a2, b2],
respectively. The classical turning points are denoted by xL1 and xR1 for the left barrier and
xL2 and xR2 for the right barrier, respectively (see the inset). We denote the region [x1, xL1 ] as
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�I, [xR1 , xL2 ] as �II, and [xR2 , x2] as �III, as shown in figure 2. The two barriers are equal,
V = V1 = V2 = 1.0, and the potentials in regions �I, �II, and �III are equal to zero. We select
parameters such that below the barrier there are two resonant peaks (see figure 3), in order to
show the extent of the PDOS at different incident energies and around the resonant point. The
incident energies are chosen to be at resonant transmission, near the resonant point, and at the
middle transparent point—that is, E1 = 0.11, E2 = 0.139, E3 = 0.5896, and E4 = 0.93.
We choose x1 − x2 = 72λF . Here λF is Fermi wavelength and is set equal to unity. The left
barrier is located in the region [0, λF ] and the right barrier is in the region [7λF , 8λF ]. In the
following discussion, probe 1 is at x1 and probe 2 is at x2. The four incident energies are listed
in the first column of table 1. The reflection probabilities and transmission probabilities are
listed in columns 2 and 3, respectively.

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

  R
  T

R
  &

  T

E

Figure 3. Transmission and reflection probabilities for the double-barrier structure shown in
figure 2. The solid line represents the transmission probability and the dashed line represents the
reflection probability.

Table 1. Energies, and reflection and transmission probabilities.

E R T

0.11 0.832 0.168
0.139 7.59 × 10−3 0.9924
0.5896 2.03 × 10−5 0.9999
0.93 0.582 0.418

Figures 4(a) and 4(b) show the distributions of the LPDOS quantities dn11(x)/dE in real
space. In the region �I, outside the two barriers, the quantities dn11(x)/dE oscillate due
to the interference of the incident wave and the reflected wave. In figure 4(a) the dashed
line is plotted at the resonant energy E = E3. The reflection dynamical density of states
dn11(x)/dE is zero. This is as expected, since in this case the particles are totally transmitted
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-20 0 20 40
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

 

x

-20 0 20 40
-0.02

-0.01

0.00

0.01

0.02

0.03

 b

 a

dn
11

(x
)/

dE

x

dn
11

(x
)/

dE

Figure 4. LPDOS dn11(x)/dE distributions in real space at different incident energies. (a) The
solid line is at E = E2 and the dashed line is at E = E3 (resonant). (b) The solid line is at E = E1
and the dashed line is at E = E4.

to the outgoing probe 2. No states |1, x, 1〉 exist in the whole system. The reflections can
occur only on the boundary of probe 2. But in this work we do not study boundary effects.
We are only interested in the dynamical density of states in the transport processes. The solid
line in figure 4(a) shows the LPDOS dn11(x)/dE with a slight reflection. It is not zero and
it fluctuates. In the well, we find that dn11(x)/dE is not symmetric and is larger than that
outside the well, despite the symmetry of the structure. This is because in the well the barrier
located on the right reflects carriers back to probe 1 and contributes to dn11(x)/dE, but the left
barrier does not contribute to dn11(x)/dE. This is unlike the case for the transmission density
of states dn12(x)/dE. Figure 5 shows the distribution of dn12(x)/dE. It is different from the
distribution of dn11(x)/dE. Physically dn12(x)/dE represents the transmission states in the
system. The distribution of dn12(x)/dE is always symmetric, as predicted by quasi-classical
arguments. A typical characteristic is that at the resonant point the transmission density of
states is almost located in the well. These results are confirmed by the explicit expression
dn21(x)/dE = (T /2) dn(x)/dE given in reference [22], since at the resonant point the total
density of states has a maximum peak in the well [23] as shown in figure 9, later. When the
reflection probabilities increase, the LPDOS dn11(x)/dE becomes larger in the region �I than
those in the regions �II and �III. This is due to the particles having little opportunity to pass
through the barriers. The global characteristics of dn11(x)/dE are shown in figures 6(a), 6(b).
In this paper we do not consider the relaxation effect caused by reservoirs. The particles enter
the scattering region only when they leave the probes; see figure 1. This is just like the case of
a photon emitted from a black body. The relaxation of particles in the reservoirs can be dealt
with using the relaxation time τφ [29, 30]. Thus, the GPDOSs are calculated by integration
of the LPDOS over each region where the reservoir is not involved. Figure 6(a) shows that
dramatic oscillations occur around the resonant energies in the region�III. This has no classical
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-30 -20 -10 0 10 20 30 40
0.00
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Figure 5. LPDOS dn21(x)/dE distributions in real space at different incident energies. (a) The
solid line is at E = E1 and the dashed line is at E = E4. (b) The solid line is at E = E2 and the
dashed line is at E = E3 (resonant).
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E
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E
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Figure 6. The global PDOS dN11/dE integrated in three different regions versus incident energy
E. (a) The curve shows dN11/dE in the region �III. (b) The solid line is in the region �II and the
dotted line is in the region �I.
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counterpart. In the classical and WKB approximations, dn11(x)/dE or dN11/dE is always
zero in the region �III [31]. Comparing figure 6(a) with figure 6(b), we find that this quantum
effect is very small, and is about 1% in the region �I and 6% in the well. However, the global
density of states dN21/dE does not oscillate. It is always positive—see figure 7—since the
total DOS and the transmission probabilities are always positive. At resonant energies, the
GPDOSs of dN21/dE reach their maxima, as shown by the dashed line in figure 7. In other
regions, the peak is low.
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Figure 7. The global PDOS dN21/dE integrated in three regions. The solid line is in the region
�I. The dashed line is in the region �II. The dotted line is in the region �III and exactly equal to
the solid line.

The physically measurable quantities are injectivity and emissivity. In the absence of
magnetic field, the injectivity is equal to the emissivity [9]. Thus, we plot the injectivity for
discussion, and assume the particles to be incident from probe 1 (see figure 2). Figure 8 shows
the distributions of injectivities at different incident energies. It can be seen that the behaviours
in the three regions are different. The typical characteristic is that for all incident energies the
injectivities in the region �III are constant. In our simplified model, the wavefunctions in the
region �III are plane waves and dnα(x)/dE is equal to |ψα(x)|2/hvα [16]. Here, ψα(x) is a
wavefunction of a particle incident from probe α. It can be predicted from this expression that
the injectivities will be constant in the region �III. It is interesting to see in figure 8(c) that
the full quantum quantity of the LPDOS, dn11(x)/dE, can be compared to dn12(x)/dE in the
region �III. The amplitude of this quantity is of the same order as dn12(x)/dE. However, in
many important calculations this quantity is neglected [16]. As mentioned above, the WKB
approximation and quasi-classical approximation give none of this value. From figure 8(c) we
can see that dn12(x)/dE is positive but dn11(x)/dE can be positive or negative. The sum of
dn12(x)/dE and dn11(x)/dE is constant. So, in the full quantum calculations we must involve
the contributions of dn11(x)/dE.

The total density of states in the well is plotted in figure 9. It is clear that at the
resonant energy the total DOS reaches its largest value. The width of the peak becomes
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Figure 8. The distribution of the injectivity dn1(x)/dE in real space and a comparison with
its components dn11(x)/dE and dn12(x)/dE versus the incident energies. (a) The solid line is
dn1(x)/dE at E2 and the dashed line is at E1. (b) The solid line is at incident energy E3 (resonant)
and the dashed line is at E4. (c) The solid line is the local injectivity dn1(x)/dE, the dashed line
is dn12(x)/dE, and the dotted line is dn11(x)/dE at E4.

Figure 9. The total density of states dN(�II)/dE in the well. (A comparison of the numerical and
analytical method has been carried out. The DOS and the injectivity are exactly the same within
the numerical precision.)
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wider as the incident energy increases. This result is consistent with those obtained by other
methods [32].

4. Conclusions

We have investigated the partitioned densities of states and their global characteristics. A
brief derivation gives a clear physical picture of this kind of decomposition. Numerical results
are derived to provide a better understanding of the meaning of this partitioning. We found
not only that the total density of states is important, but also that the partitions of the DOS
are needed in transport problems. Generally, in calculating the AC admittance, the PDOS
and LPDOS cannot be neglected in the nonclassical regime. Our derivation indicates that the
internal potential variations have a great influence on the partitioned DOS.
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